Homework Assignment #2, due Wednesday, February 5, 2019
Frequency Distribution Histogram: Histogram of Brain Volumes-Model Problem/Tutorial
Brain Volume Data
1005,963,1035,1027,1281,1272,1057,1079,1034,1070,1173,1079,1067,1104,1347,1439,1029,1100,1204,1160
Statistical “W”s
Who: Monozygotic twins
What: Brain size in volume, cm3
When: 1998
Where: N/A
How: Brain size determined through MRI and quantitative image analysis.
Graphical Analysis
1) Skewed right = right tail. There are higher frequency values on the left side than the right side.
2) Center of distribution estimate = 1050 cm3, because the highest frequency is between 1000-1100. The lower-end of the center of distribution is 1000 cm3 and the higher-end of center 1300 cm3 due to the shape of the histogram.
3) Outliers are the single frequency values such as 963, 1347, and 1439. Together they make up the single frequencies in the brackets 900-1000, 1300-1400, and 1400-1500.
Stem & Leaf Display
9
|
63
|
|
|
|
|
|
|
|
|
|
10
|
05
|
27
|
29
|
34
|
35
|
57
|
67
|
70
|
79
|
79
|
11
|
00
|
04
|
60
|
73
|
|
|
|
|
|
|
12
|
04
|
72
|
81
|
|
|
|
|
|
|
|
13
|
47
|
|
|
|
|
|
|
|
|
|
14
|
39
|
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
|
|
|
|
Frequency Distribution Table
Interval
|
Frequency
|
[900,1000)
|
1
|
[1000,1100)
|
10
|
[1100,1200)
|
4
|
[1200,1300)
|
3
|
[1300,1400)
|
1
|
[1400,1500)
|
1
|
Relative Frequency Distribution Table
Interval
|
Frequency
|
Relative Frequency
|
[900,1000)
|
1
|
0.05
|
[1000,1100)
|
10
|
0.5
|
[1100,1200)
|
4
|
0.2
|
[1200,1300)
|
3
|
0.15
|
[1300,1400)
|
1
|
0.05
|
[1400,1500)
|
1
|
0.05
|
Selected Descriptive Statistics
1) Sample Mean = (1005+963+1035+1027+1281+1272+1057+1079+1034+1070+1173+1079+1067+1104+1347+1439+1029+1100+1204+1160)/20 = 1126.25 cm3
Sample Median = 1079 cm3
Sample Mode = 1079 cm3
Sample midrange = (1439+963/2) = 1201 cm3
Sample Median = 1079 cm3
Sample Mode = 1079 cm3
Sample midrange = (1439+963/2) = 1201 cm3
2) Range = 476 cm3
Sample variance = (((1005-1126.25)^2)+((963-1126.25)^2)+((1035-1126.25)^2)+((1027-1126.25)^2)+((1281-1126.25)^2)+((1272-1126.25)^2)+((1057-1126.25)^2+((1079-1126.25)^2)+((1034-1126.25)^2)+((1070-1126.25)^2)+((1173-1126.25)^2)+((1079-1126.25)^2)+((1067-1126.25)^2)+((1104-1126.25)^2)+((1347-1126.25)^2)+((1439-1126.25)^2)+((1029-1126.25)^2)+((1100-1126.25)^2)+((1204-1126.25)^2)+((1160-1126.25)^2))/20 = 14785.9875 ≈ 14785.99
Sample standard deviation = (variance)^(1/2) = 121.597646 ≈ 121.60
Sample interquartile range = |(1034+1035)/2 - (1173+1204)/2| = 154
Sample interquartile range = |(1034+1035)/2 - (1173+1204)/2| = 154
3) Five number summary:
· Min = 963 cm3
· First Quartile = 1034.5 cm3
· Median = 1079 cm3
· Third Quartile = 1188.5 cm3
· Max = 1439 cm3
4) a) 11 values < 1100 cm3
b) 2 values > 1300 cm3
c) 1000 cm3 < 17 values < 1300 cm3
Extensions:
2) a) 11/20 = 0.55 = 55%
b) 2/20 = 0.1 = 10%
c) 17/20 = 0.85 = 85%
No comments:
Post a Comment